澳门新葡萄京官网注册 2

澳门新葡萄京官网注册Java并发编程系列一:Future和CompletableFuture解析与使用

Future是Java
5添加的类,用来描述一个异步计算的结果。你可以使用isDone方法检查计算是否完成,或者使用get阻塞住调用线程,直到计算完成返回结果,你也可以使用cancel方法停止任务的执行。

一、Future模式

Java
1.5开始,提供了Callable和Future,通过它们可以在任务执行完毕之后得到任务执行结果。

Future接口可以构建异步应用,是多线程开发中常见的设计模式。

当我们需要调用一个函数方法时。如果这个函数执行很慢,那么我们就要进行等待。但有时候,我们可能并不急着要结果。

因此,我们可以让被调用者立即返回,让他在后台慢慢处理这个请求。对于调用者来说,则可以先处理一些其他任务,在真正需要数据的场合再去尝试获取需要的数据。

 

澳门新葡萄京官网注册 1

public class BasicFuture {
    public static void main(String[] args) throws ExecutionException, InterruptedException {
        ExecutorService es = Executors.newFixedThreadPool(10);
        Future<Integer> f = es.submit(() ->{
                // 长时间的异步计算
                // ……
                // 然后返回结果
                return 100;
            });
//        while(!f.isDone())
//            ;
        f.get();
    }
}

澳门新葡萄京官网注册 2

1、Callable与Runnable

java.lang.Runnable是一个接口,在它里面只声明了一个run()方法,run返回值是void,任务执行完毕后无法返回任何结果

public interface Runnable {
    public abstract void run();
}

 

Callable位于java.util.concurrent包下,它也是一个接口,在它里面也只声明了一个方法叫做call(),这是一个泛型接口,call()函数返回的类型就是传递进来的V类型

public interface Callable<V> {
    V call() throws Exception;
}

 

 

虽然Future以及相关使用方法提供了异步执行任务的能力,但是对于结果的获取却是很不方便,只能通过阻塞或者轮询的方式得到任务的结果。阻塞的方式显然和我们的异步编程的初衷相违背,轮询的方式又会耗费无谓的CPU资源,而且也不能及时地得到计算结果,为什么不能用观察者设计模式当计算结果完成及时通知监听者呢?

在Java 8中, 新增加了一个包含50个方法左右的类:
CompletableFuture,默认依靠fork/join框架启动新的线程实现异步与并发的,提供了非常强大的Future的扩展功能,可以帮助我们简化异步编程的复杂性,提供了函数式编程的能力,可以通过回调的方式处理计算结果,并且提供了转换和组合CompletableFuture的方法。

2、Future + Callable

Future就是对于具体的Runnable或者Callable任务的执行结果进行取消、查询是否完成、获取结果。必要时可以通过get方法获取执行结果,该方法会阻塞直到任务返回结果

public interface Future<V> {
    boolean cancel(boolean mayInterruptIfRunning);
    boolean isCancelled();
    boolean isDone();
    V get() throws InterruptedException, ExecutionException;
    V get(long timeout, TimeUnit unit)
        throws InterruptedException, ExecutionException, TimeoutException;
}

 

怎么使用Future和Callable呢?一般情况下是配合ExecutorService来使用的,在ExecutorService接口中声明了若干个submit方法的重载版本

<T> Future<T> submit(Callable<T> task);
<T> Future<T> submit(Runnable task, T result);
Future<?> submit(Runnable task);

 

Future+Callable,使用示例如下(采用第一个方法):

import java.util.Random;
import java.util.concurrent.*;


/**
 * @program: callable
 * @description: Test
 * @author: Mr.Wang
 * @create: 2018-08-12 11:37
 **/
public class MyTest {
    public static void main(String[] args)  {
        ExecutorService executor = Executors.newCachedThreadPool();
        Future<Integer> result = executor.submit(new Callable<Integer>() {
            public Integer call() throws Exception {
                return new Random().nextInt();
            }
        });
        executor.shutdown();

        try {
            System.out.println("result:" + result.get());
        } catch (InterruptedException e) {
            e.printStackTrace();
        } catch (ExecutionException e) {
            e.printStackTrace();
        }
    }

}

 结果:

result:297483790

 

 其它方式:

import java.util.Random;
import java.util.concurrent.*;

/**
 * @program: callable
 * @description: testfuture
 * @author: Mr.Wang
 * @create: 2018-08-12 12:11
 **/
public class Testfuture {
    public static void main(String[] args){
        //第一种方式
        FutureTask<Integer> task = new FutureTask<Integer>(new Callable<Integer>() {
            @Override
            public Integer call() throws Exception {
                return new Random().nextInt();
            }
        });
        new Thread(task).start();
        //第二种方方式
//        ExecutorService executor = Executors.newSingleThreadExecutor();
//        FutureTask<Integer> task = new FutureTask<Integer>(new Callable<Integer>() {
//            @Override
//            public Integer call() throws Exception {
//                return new Random().nextInt();
//            }
//        });
//        executor.submit(task);

        try {
            System.out.println("result: "+task.get());
        } catch (InterruptedException e) {
            e.printStackTrace();
        } catch (ExecutionException e) {
            e.printStackTrace();
        }
    }

}

 

result:-358490809

很多语言,比如Node.js,采用回调的方式实现异步编程。Java的一些框架,比如Netty,自己扩展了Java的 Future接口,提供了addListener等多个扩展方法:

CompletableFuture类实现了CompletionStage和Future接口,所以可以像以前一样通过阻塞或者轮询的方式获得结果,尽管这种方式不推荐使用。

3、Future 接口的局限性

 了解了Future的使用,这里就要谈谈Future的局限性。Future很难直接表述多个Future
结果之间的依赖性,开发中,我们经常需要达成以下目的:

  • 将两个异步计算合并为一个(这两个异步计算之间相互独立,同时第二个又依赖于第一个的结果)

  • 等待 Future 集合中的所有任务都完成。

  • 仅等待 Future 集合中最快结束的任务完成,并返回它的结果。

*

 *

ChannelFuture future = bootstrap.connect(new InetSocketAddress(host, port));
      future.addListener(new ChannelFutureListener()
      {
              @Override
              public void operationComplete(ChannelFuture future) throws Exception
              {
                  if (future.isSuccess()) {
                      // SUCCESS
                  }
                  else {
                      // FAILURE
                  }
              }
      });

创建CompletableFuture对象。

二、CompletableFuture

首先,CompletableFuture类实现了CompletionStage和Future接口,因此你可以像Future那样使用它。

莫急,下面通过例子来一步一步解释CompletableFuture的使用。

Google
guava也提供了通用的扩展Future:ListenableFuture、SettableFuture 以及辅助类Futures等,方便异步编程。

以下四个静态方法用来为一段异步执行的代码创建CompletableFuture对象:

创建CompletableFuture对象

说明:Async结尾的方法都是可以异步执行的,如果指定了线程池,会在指定的线程池中执行,如果没有指定,默认会在ForkJoinPool.commonPool()中执行。下面很多方法都是类似的,不再做特别说明。

四个静态方法用来为一段异步执行的代码创建CompletableFuture对象,方法的参数类型都是函数式接口,所以可以使用lambda表达式实现异步任务

runAsync方法:它以Runnabel函数式接口类型为参数,所以CompletableFuture的计算结果为空。

supplyAsync方法以Supplier<U>函数式接口类型为参数,CompletableFuture的计算结果类型为U。

 

public static CompletableFuture<Void> runAsync(Runnable runnable)
public static CompletableFuture<Void> runAsync(Runnable runnable, Executor executor)
public static <U> CompletableFuture<U> supplyAsync(Supplier<U> supplier)
public static <U> CompletableFuture<U> supplyAsync(Supplier<U> supplier, Executor executor)

 

final String name = ...;
inFlight.add(name);
ListenableFuture<Result> future = service.query(name);
future.addListener(new Runnable() {
  public void run() {
    processedCount.incrementAndGet();
    inFlight.remove(name);
    lastProcessed.set(name);
    logger.info("Done with {0}", name);
  }
}, executor);
public static CompletableFuture<Void>              runAsync(Runnable runnable)  public static CompletableFuture<Void>              runAsync(Runnable runnable, Executor executor)  public static <U> CompletableFuture<U> supplyAsync(Supplier<U> supplier)  public static <U> CompletableFuture<U> supplyAsync(Supplier<U> supplier, Executor executor) 

1、变换结果

 

public <U> CompletionStage<U> thenApply(Function<? super T,? extends U> fn);
public <U> CompletionStage<U> thenApplyAsync(Function<? super T,? extends U> fn);
public <U> CompletionStage<U> thenApplyAsync(Function<? super T,? extends U> fn,Executor executor);

这些方法的输入是上一个阶段计算后的结果,返回值是经过转化后结果

例子:

import java.util.concurrent.CompletableFuture;

/**
 * @program: callable
 * @description: test
 * @author: Mr.Wang
 * @create: 2018-08-12 12:36
 **/
public class TestCompleteFuture {
    public static void main(String[] args){
        String result = CompletableFuture.supplyAsync(()->{return "Hello ";}).thenApplyAsync(v -> v + "world").join();
        System.out.println(result);
    }
}

结果:

Hello world

 

Scala也提供了简单易用且功能强大的Future/Promise异步编程模式。

runAsync方法也好理解,它以Runnable函数式接口类型为参数,所以CompletableFuture的计算结果为空。以Async结尾会使用其它的线程去执行,没有指定Executor的方法会使用ForkJoinPool.commonPool()作为它的线程池执行异步代码。

2、消费结果

 

public CompletionStage<Void> thenAccept(Consumer<? super T> action);
public CompletionStage<Void> thenAcceptAsync(Consumer<? super T> action);
public CompletionStage<Void> thenAcceptAsync(Consumer<? super T> action,Executor executor);

这些方法只是针对结果进行消费,入参是Consumer,没有返回值

 

例子:

import java.util.concurrent.CompletableFuture;

/**
 * @program: callable
 * @description: test
 * @author: Mr.Wang
 * @create: 2018-08-12 12:36
 **/
public class TestCompleteFuture {
    public static void main(String[] args){
        CompletableFuture.supplyAsync(()->{return "Hello ";}).thenAccept(v -> { System.out.println("consumer: " + v);});
    }
}

结果:

consumer: Hello 

 

作为正统的Java类库,是不是应该做点什么,加强一下自身库的功能呢?

supplyAsync方法以Supplier<U>函数式接口类型为参数,CompletableFuture的计算结果类型为U。

3、结合两个CompletionStage的结果,进行转化后返回

public <U,V> CompletionStage<V> thenCombine(CompletionStage<? extends U> other,BiFunction<? super T,? super U,? extends V> fn);
public <U,V> CompletionStage<V> thenCombineAsync(CompletionStage<? extends U> other,BiFunction<? super T,? super U,? extends V> fn);
public <U,V> CompletionStage<V> thenCombineAsync(CompletionStage<? extends U> other,BiFunction<? super T,? super U,? extends V> fn,Executor executor);

需要上一阶段的返回值,并且other代表的CompletionStage也要返回值之后,把这两个返回值,进行转换后返回指定类型的值。

说明:同样,也存在对两个CompletionStage结果进行消耗的一组方法,例如thenAcceptBoth,这里不再进行示例。

例子:

import java.util.concurrent.CompletableFuture;


/**
 * @program: callable
 * @description: test
 * @author: Mr.Wang
 * @create: 2018-08-12 12:36
 **/
public class TestCompleteFuture {
    public static void main(String[] args){

        String result = CompletableFuture.supplyAsync(()->{
            try {
                Thread.sleep(1000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            return "Hello";
        }).thenCombine(CompletableFuture.supplyAsync(()->{
            try {
                Thread.sleep(2000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            return "world";
        }),(s1,s2)->{return s1 + " " + s2;}).join();
        System.out.println(result);
    }
}

结果:

Hello world

 

在Java 8中,
新增加了一个包含50个方法左右的类: CompletableFuture,提供了非常强大的Future的扩展功能,可以帮助我们简化异步编程的复杂性,提供了函数式编程的能力,可以通过回调的方式处理计算结果,并且提供了转换和组合CompletableFuture的方法。

因为方法的参数类型都是函数式接口,所以可以使用lambda表达式实现异步任务,比如:

4、两个CompletionStage,谁计算的快,就用那个CompletionStage的结果进行下一步的处理

 

public <U> CompletionStage<U> applyToEither(CompletionStage<? extends T> other,Function<? super T, U> fn);
public <U> CompletionStage<U> applyToEitherAsync(CompletionStage<? extends T> other,Function<? super T, U> fn);
public <U> CompletionStage<U> applyToEitherAsync(CompletionStage<? extends T> other,Function<? super T, U> fn,Executor executor);

两种渠道完成同一个事情,就可以调用这个方法,找一个最快的结果进行处理,最终有返回值。

例子:

import java.util.concurrent.CompletableFuture;


/**
 * @program: callable
 * @description: test
 * @author: Mr.Wang
 * @create: 2018-08-12 12:36
 **/
public class TestCompleteFuture {
    public static void main(String[] args){

       String result = CompletableFuture.supplyAsync(()->{
           try {
               Thread.sleep(100);
           } catch (InterruptedException e) {
               e.printStackTrace();
           }
           return "Hi Boy";
       }).applyToEither(CompletableFuture.supplyAsync(()->{
           try {
               Thread.sleep(300);
           } catch (InterruptedException e) {
               e.printStackTrace();
           }
           return "Hi Girl";
       }),(s)->{return s;}).join();
       System.out.println(result);
    }
}

结果:

Hi Boy

下面我们就看一看它的功能吧。

CompletableFuture<String> future = CompletableFuture.supplyAsync(() -> {      //长时间的计算任务      return "hello world";  }); 

5、运行时出现了异常,可以通过exceptionally进行补偿

public CompletionStage<T> exceptionally(Function<Throwable, ? extends T> fn);

例子:

import java.util.concurrent.CompletableFuture;


/**
 * @program: callable
 * @description: test
 * @author: Mr.Wang
 * @create: 2018-08-12 12:36
 **/
public class TestCompleteFuture {
    public static void main(String[] args){

       String result = CompletableFuture.supplyAsync(()->{
           try {
               Thread.sleep(100);
           } catch (InterruptedException e) {
               e.printStackTrace();
           }
           if(true) {
               throw new RuntimeException("exception test!");
           }

           return "Hi Boy";
       }).exceptionally(e->{
           System.out.println(e.getMessage());
           return "Hello world!";
       }).join();
       System.out.println(result);
    }
}

结果:

java.lang.RuntimeException: exception test!
Hello world!

 

主动完成计算

CompletableFuture类实现了CompletionStage和Future接口,所以你还是可以像以前一样通过阻塞或者轮询的方式获得结果,尽管这种方式不推荐使用。

public T     get()
public T    get(long timeout, TimeUnit unit)
public T    getNow(T valueIfAbsent)
public T    join()

getNow有点特殊,如果结果已经计算完则返回结果或者抛出异常,否则返回给定的valueIfAbsent值。
join返回计算的结果或者抛出一个unchecked异常(CompletionException),它和get对抛出的异常的处理有些细微的区别,你可以运行下面的代码进行比较:

CompletableFuture<Integer> future = CompletableFuture.supplyAsync(() -> {
    int i = 1/0;
    return 100;
});
//future.join();
future.get();

尽管Future可以代表在另外的线程中执行的一段异步代码,但是你还是可以在本身线程中执行:

public static CompletableFuture<Integer> compute() {
    final CompletableFuture<Integer> future = new CompletableFuture<>();
    return future;
}

上面的代码中future没有关联任何的Callback、线程池、异步任务等,如果客户端调用future.get就会一致傻等下去。你可以通过下面的代码完成一个计算,触发客户端的等待:

f.complete(100);

当然你也可以抛出一个异常,而不是一个成功的计算结果:

f.completeExceptionally(new Exception());

完整的代码如下:

public class BasicMain {
    public static CompletableFuture<Integer> compute() {
        final CompletableFuture<Integer> future = new CompletableFuture<>();
        return future;
    }
    public static void main(String[] args) throws Exception {
        final CompletableFuture<Integer> f = compute();
        class Client extends Thread {
            CompletableFuture<Integer> f;
            Client(String threadName, CompletableFuture<Integer> f) {
                super(threadName);
                this.f = f;
            }
            @Override
            public void run() {
                try {
                    System.out.println(this.getName() + ": " + f.get());
                } catch (InterruptedException e) {
                    e.printStackTrace();
                } catch (ExecutionException e) {
                    e.printStackTrace();
                }
            }
        }
        new Client("Client1", f).start();
        new Client("Client2", f).start();
        System.out.println("waiting");
        f.complete(100);
        //f.completeExceptionally(new Exception());
        System.in.read();
    }
}

可以看到我们并没有把f.complete(100);放在另外的线程中去执行,但是在大部分情况下我们可能会用一个线程池去执行这些异步任务。CompletableFuture.complete()CompletableFuture.completeExceptionally只能被调用一次。但是我们有两个后门方法可以重设这个值:obtrudeValueobtrudeException,但是使用的时候要小心,因为complete已经触发了客户端,有可能导致客户端会得到不期望的结果。

计算结果完成时的处理

三、结束

OK,了解了以上使用,基本上就对CompletableFuture比较清楚了。

后面会找个时间说说CompletableFuture实现原理

 

创建CompletableFuture对象。

CompletableFuture.completedFuture是一个静态辅助方法,用来返回一个已经计算好的CompletableFuture

public static <U> CompletableFuture<U> completedFuture(U value)

而以下四个静态方法用来为一段异步执行的代码创建CompletableFuture对象:

public static CompletableFuture<Void>  runAsync(Runnable runnable)
public static CompletableFuture<Void>     runAsync(Runnable runnable, Executor executor)
public static <U> CompletableFuture<U>  supplyAsync(Supplier<U> supplier)
public static <U> CompletableFuture<U>  supplyAsync(Supplier<U> supplier, Executor executor)

Async结尾并且没有指定Executor的方法会使用ForkJoinPool.commonPool()作为它的线程池执行异步代码。

runAsync方法也好理解,它以Runnable函数式接口类型为参数,所以CompletableFuture的计算结果为空。

supplyAsync方法以Supplier<U>函数式接口类型为参数,CompletableFuture的计算结果类型为U

因为方法的参数类型都是函数式接口,所以可以使用lambda表达式实现异步任务,比如:

CompletableFuture<String> future = CompletableFuture.supplyAsync(() -> {
    //长时间的计算任务
    return "·00";
});

当CompletableFuture的计算结果完成,或者抛出异常的时候,我们可以执行特定的Action。主要是下面的方法:

计算结果完成时的处理

CompletableFuture的计算结果完成,或者抛出异常的时候,我们可以执行特定的Action。主要是下面的方法:

public CompletableFuture<T> whenComplete(BiConsumer<? super T,? super Throwable> action)
public CompletableFuture<T> whenCompleteAsync(BiConsumer<? super T,? super Throwable> action)
public CompletableFuture<T> whenCompleteAsync(BiConsumer<? super T,? super Throwable> action, Executor executor)
public CompletableFuture<T> exceptionally(Function<Throwable,? extends T> fn)

可以看到Action的类型是BiConsumer<? super T,? super Throwable>,它可以处理正常的计算结果,或者异常情况。
方法不以Async结尾,意味着Action使用相同的线程执行,而Async可能会使用其它的线程去执行(如果使用相同的线程池,也可能会被同一个线程选中执行)。

注意这几个方法都会返回CompletableFuture,当Action执行完毕后它的结果返回原始的CompletableFuture的计算结果或者返回异常。

public class Main {
    private static Random rand = new Random();
    private static long t = System.currentTimeMillis();
    static int getMoreData() {
        System.out.println("begin to start compute");
        try {
            Thread.sleep(10000);
        } catch (InterruptedException e) {
            throw new RuntimeException(e);
        }
        System.out.println("end to start compute. passed " + (System.currentTimeMillis() - t)/1000 + " seconds");
        return rand.nextInt(1000);
    }
    public static void main(String[] args) throws Exception {
        CompletableFuture<Integer> future = CompletableFuture.supplyAsync(Main::getMoreData);
        Future<Integer> f = future.whenComplete((v, e) -> {
            System.out.println(v);
            System.out.println(e);
        });
        System.out.println(f.get());
        System.in.read();
    }
}

exceptionally方法返回一个新的CompletableFuture,当原始的CompletableFuture抛出异常的时候,就会触发这个CompletableFuture的计算,调用function计算值,否则如果原始的CompletableFuture正常计算完后,这个新的CompletableFuture也计算完成,它的值和原始的CompletableFuture的计算的值相同。也就是这个exceptionally方法用来处理异常的情况。

下面一组方法虽然也返回CompletableFuture对象,但是对象的值和原来的CompletableFuture计算的值不同。当原先的CompletableFuture的值计算完成或者抛出异常的时候,会触发这个CompletableFuture对象的计算,结果由BiFunction参数计算而得。因此这组方法兼有whenComplete和转换的两个功能。

public <U> CompletableFuture<U> handle(BiFunction<? super T,Throwable,? extends U> fn)
public <U> CompletableFuture<U> handleAsync(BiFunction<? super T,Throwable,? extends U> fn)
public <U> CompletableFuture<U> handleAsync(BiFunction<? super T,Throwable,? extends U> fn, Executor executor)

同样,不以Async结尾的方法由原来的线程计算,以Async结尾的方法由默认的线程池ForkJoinPool.commonPool()或者指定的线程池executor运行。

public CompletableFuture<T>  whenComplete(BiConsumer<? super T,? super Throwable> action)  public CompletableFuture<T>  whenCompleteAsync(BiConsumer<? super T,? super Throwable> action)  public CompletableFuture<T>  whenCompleteAsync(BiConsumer<? super T,? super Throwable> action, Executor executor)  public CompletableFuture<T>  exceptionally(Function<Throwable,? extends T> fn) 

转换

CompletableFuture可以作为monad(单子)和functor。由于回调风格的实现,我们不必因为等待一个计算完成而阻塞着调用线程,而是告诉CompletableFuture当计算完成的时候请执行某个function。而且我们还可以将这些操作串联起来,或者将CompletableFuture组合起来。

public <U> CompletableFuture<U> thenApply(Function<? super T,? extends U> fn)
public <U> CompletableFuture<U> thenApplyAsync(Function<? super T,? extends U> fn)
public <U> CompletableFuture<U> thenApplyAsync(Function<? super T,? extends U> fn, Executor executor)

这一组函数的功能是当原来的CompletableFuture计算完后,将结果传递给函数fn,将fn的结果作为新的CompletableFuture计算结果。因此它的功能相当于将CompletableFuture<T>转换成CompletableFuture<U>

这三个函数的区别和上面介绍的一样,不以Async结尾的方法由原来的线程计算,以Async结尾的方法由默认的线程池ForkJoinPool.commonPool()或者指定的线程池executor运行。Java的CompletableFuture类总是遵循这样的原则,下面就不一一赘述了。

使用例子如下:

CompletableFuture<Integer> future = CompletableFuture.supplyAsync(() -> {
    return 100;
});
CompletableFuture<String> f =  future.thenApplyAsync(i -> i * 10).thenApply(i -> i.toString());
System.out.println(f.get()); //"1000"

需要注意的是,这些转换并不是马上执行的,也不会阻塞,而是在前一个stage完成后继续执行。

它们与handle方法的区别在于handle方法会处理正常计算值和异常,因此它可以屏蔽异常,避免异常继续抛出。而thenApply方法只是用来处理正常值,因此一旦有异常就会抛出。

可以看到Action的类型是BiConsumer<? super T,? super
Throwable>,它可以处理正常的计算结果,或者异常情况。

纯消费(执行Action)

上面的方法是当计算完成的时候,会生成新的计算结果(thenApplyhandle),或者返回同样的计算结果whenCompleteCompletableFuture还提供了一种处理结果的方法,只对结果执行Action,而不返回新的计算值,因此计算值为Void:

public CompletableFuture<Void>     thenAccept(Consumer<? super T> action)
public CompletableFuture<Void>    thenAcceptAsync(Consumer<? super T> action)
public CompletableFuture<Void>    thenAcceptAsync(Consumer<? super T> action, Executor executor)

看它的参数类型也就明白了,它们是函数式接口Consumer,这个接口只有输入,没有返回值。

CompletableFuture<Integer> future = CompletableFuture.supplyAsync(() -> {
    return 100;
});
CompletableFuture<Void> f =  future.thenAccept(System.out::println);
System.out.println(f.get());

thenAcceptBoth以及相关方法提供了类似的功能,当两个CompletionStage都正常完成计算的时候,就会执行提供的action,它用来组合另外一个异步的结果。
runAfterBoth是当两个CompletionStage都正常完成计算的时候,执行一个Runnable,这个Runnable并不使用计算的结果。

public <U> CompletableFuture<Void> thenAcceptBoth(CompletionStage<? extends U> other, BiConsumer<? super T,? super U> action)
public <U> CompletableFuture<Void> thenAcceptBothAsync(CompletionStage<? extends U> other, BiConsumer<? super T,? super U> action)
public <U> CompletableFuture<Void> thenAcceptBothAsync(CompletionStage<? extends U> other, BiConsumer<? super T,? super U> action, Executor executor)
public     CompletableFuture<Void> runAfterBoth(CompletionStage<?> other,  Runnable action)

例子如下:

CompletableFuture<Integer> future = CompletableFuture.supplyAsync(() -> {
    return 100;
});
CompletableFuture<Void> f =  future.thenAcceptBoth(CompletableFuture.completedFuture(10), (x, y) -> System.out.println(x * y));
System.out.println(f.get());

更彻底地,下面一组方法当计算完成的时候会执行一个Runnable,与thenAccept不同,Runnable并不使用CompletableFuture计算的结果。

public CompletableFuture<Void>     thenRun(Runnable action)
public CompletableFuture<Void>    thenRunAsync(Runnable action)
public CompletableFuture<Void>    thenRunAsync(Runnable action, Executor executor

因此先前的CompletableFuture计算的结果被忽略了,这个方法返回CompletableFuture<Void>类型的对象。

CompletableFuture<Integer> future = CompletableFuture.supplyAsync(() -> {
    return 100;
});
CompletableFuture<Void> f =  future.thenRun(() -> System.out.println("finished"));
System.out.println(f.get());

因此,你可以根据方法的参数的类型来加速你的记忆。Runnable类型的参数会忽略计算的结果,Consumer是纯消费计算结果,BiConsumer会组合另外一个CompletionStage纯消费,Function会对计算结果做转换,BiFunction会组合另外一个CompletionStage的计算结果做转换。

注意这几个方法都会返回CompletableFuture,当Action执行完毕后它的结果返回原始的CompletableFuture的计算结果或者返回异常。

组合

public <U> CompletableFuture<U> thenCompose(Function<? super T,? extends CompletionStage<U>> fn)
public <U> CompletableFuture<U> thenComposeAsync(Function<? super T,? extends CompletionStage<U>> fn)
public <U> CompletableFuture<U> thenComposeAsync(Function<? super T,? extends CompletionStage<U>> fn, Executor executor

这一组方法接受一个Function作为参数,这个Function的输入是当前的CompletableFuture的计算值,返回结果将是一个新的CompletableFuture,这个新的CompletableFuture会组合原来的CompletableFuture和函数返回的CompletableFuture。因此它的功能类似:

A +--> B +---> C

记住,thenCompose返回的对象并不一是函数fn返回的对象,如果原来的CompletableFuture还没有计算出来,它就会生成一个新的组合后的CompletableFuture。

例子:

CompletableFuture<Integer> future = CompletableFuture.supplyAsync(() -> {
    return 100;
});
CompletableFuture<String> f =  future.thenCompose( i -> {
    return CompletableFuture.supplyAsync(() -> {
        return (i * 10) + "";
    });
});
System.out.println(f.get()); //1000

而下面的一组方法thenCombine用来复合另外一个CompletionStage的结果。它的功能类似:

A +
  |
  +------> C
  +------^
B +

两个CompletionStage是并行执行的,它们之间并没有先后依赖顺序,other并不会等待先前的CompletableFuture执行完毕后再执行。

public <U,V> CompletableFuture<V> thenCombine(CompletionStage<? extends U> other, BiFunction<? super T,? super U,? extends V> fn)
public <U,V> CompletableFuture<V> thenCombineAsync(CompletionStage<? extends U> other, BiFunction<? super T,? super U,? extends V> fn)
public <U,V> CompletableFuture<V> thenCombineAsync(CompletionStage<? extends U> other, BiFunction<? super T,? super U,? extends V> fn, Executor executor)

其实从功能上来讲,它们的功能更类似thenAcceptBoth,只不过thenAcceptBoth是纯消费,它的函数参数没有返回值,而thenCombine的函数参数fn有返回值。

CompletableFuture<Integer> future = CompletableFuture.supplyAsync(() -> {
    return 100;
});
CompletableFuture<String> future2 = CompletableFuture.supplyAsync(() -> {
    return "abc";
});
CompletableFuture<String> f =  future.thenCombine(future2, (x,y) -> y + "-" + x);
System.out.println(f.get()); //abc-100
public class Main {      private static Random rand = new Random();      private static long t = System.currentTimeMillis();      static int getMoreData() {          System.out.println("begin to start compute");          try {              Thread.sleep(10000);          } catch (InterruptedException e) {              throw new RuntimeException(e);          }          System.out.println("end to start compute. passed " + (System.currentTimeMillis() - t)/1000 + " seconds");          return rand.nextInt(1000);      }      public static void main(String[] args) throws Exception {          CompletableFuture<Integer> future = CompletableFuture.supplyAsync(Main::getMoreData);          Future<Integer> f = future.whenComplete((v, e) -> {              System.out.println(v);              System.out.println(e);          });          System.out.println(f.get());          System.in.read();      }  } 

Either

thenAcceptBothrunAfterBoth是当两个CompletableFuture都计算完成,而我们下面要了解的方法是当任意一个CompletableFuture计算完成的时候就会执行。

public CompletableFuture<Void>     acceptEither(CompletionStage<? extends T> other, Consumer<? super T> action)
public CompletableFuture<Void>    acceptEitherAsync(CompletionStage<? extends T> other, Consumer<? super T> action)
public CompletableFuture<Void>    acceptEitherAsync(CompletionStage<? extends T> other, Consumer<? super T> action, Executor executor)
public <U> CompletableFuture<U> applyToEither(CompletionStage<? extends T> other, Function<? super T,U> fn)
public <U> CompletableFuture<U> applyToEitherAsync(CompletionStage<? extends T> other, Function<? super T,U> fn)
public <U> CompletableFuture<U> applyToEitherAsync(CompletionStage<? extends T> other, Function<? super T,U> fn, Executor executor)

acceptEither方法是当任意一个CompletionStage完成的时候,action这个消费者就会被执行。这个方法返回CompletableFuture<Void>

applyToEither方法是当任意一个CompletionStage完成的时候,fn会被执行,它的返回值会当作新的CompletableFuture<U>的计算结果。

下面这个例子有时会输出100,有时候会输出200,哪个Future先完成就会根据它的结果计算。

Random rand = new Random();
CompletableFuture<Integer> future = CompletableFuture.supplyAsync(() -> {
    try {
        Thread.sleep(10000 + rand.nextInt(1000));
    } catch (InterruptedException e) {
        e.printStackTrace();
    }
    return 100;
});
CompletableFuture<Integer> future2 = CompletableFuture.supplyAsync(() -> {
    try {
        Thread.sleep(10000 + rand.nextInt(1000));
    } catch (InterruptedException e) {
        e.printStackTrace();
    }
    return 200;
});
CompletableFuture<String> f =  future.applyToEither(future2,i -> i.toString());

exceptionally方法返回一个新的CompletableFuture,当原始的CompletableFuture抛出异常的时候,就会触发这个CompletableFuture的计算,调用function计算值,否则如果原始的CompletableFuture正常计算完后,这个新的CompletableFuture也计算完成,它的值和原始的CompletableFuture的计算的值相同。也就是这个exceptionally方法用来处理异常的情况。

辅助方法 allOf 和 anyOf

前面我们已经介绍了几个静态方法:completedFuturerunAsyncsupplyAsync,下面介绍的这两个方法用来组合多个CompletableFuture。

public static CompletableFuture<Void>      allOf(CompletableFuture<?>... cfs)
public static CompletableFuture<Object>   anyOf(CompletableFuture<?>... cfs)

allOf方法是当所有的CompletableFuture都执行完后执行计算。

anyOf方法是当任意一个CompletableFuture执行完后就会执行计算,计算的结果相同。

下面的代码运行结果有时是100,有时是”abc”。但是anyOfapplyToEither不同。anyOf接受任意多的CompletableFuture但是applyToEither只是判断两个CompletableFuture,anyOf返回值的计算结果是参数中其中一个CompletableFuture的计算结果,applyToEither返回值的计算结果却是要经过fn处理的。当然还有静态方法的区别,线程池的选择等。

Random rand = new Random();
CompletableFuture<Integer> future1 = CompletableFuture.supplyAsync(() -> {
    try {
        Thread.sleep(10000 + rand.nextInt(1000));
    } catch (InterruptedException e) {
        e.printStackTrace();
    }
    return 100;
});
CompletableFuture<String> future2 = CompletableFuture.supplyAsync(() -> {
    try {
        Thread.sleep(10000 + rand.nextInt(1000));
    } catch (InterruptedException e) {
        e.printStackTrace();
    }
    return "abc";
});
//CompletableFuture<Void> f =  CompletableFuture.allOf(future1,future2);
CompletableFuture<Object> f =  CompletableFuture.anyOf(future1,future2);
System.out.println(f.get());

我想通过上面的介绍,应该把CompletableFuture的方法和功能介绍完了(cancelisCompletedExceptionally()isDone()以及继承于Object的方法无需介绍了, toCompletableFuture()返回CompletableFuture本身),希望你能全面了解CompletableFuture强大的功能,并将它应用到Java的异步编程中。如果你有使用它的开源项目,可以留言分享一下。

结果转换

更进一步

如果你用过Guava的Future类,你就会知道它的Futures辅助类提供了很多便利方法,用来处理多个Future,而不像Java的CompletableFuture,只提供了allOfanyOf两个方法。
比如有这样一个需求,将多个CompletableFuture组合成一个CompletableFuture,这个组合后的CompletableFuture的计算结果是个List,它包含前面所有的CompletableFuture的计算结果,guava的Futures.allAsList可以实现这样的功能,但是对于java
CompletableFuture,我们需要一些辅助方法:

public static <T> CompletableFuture<List<T>> sequence(List<CompletableFuture<T>> futures) {
       CompletableFuture<Void> allDoneFuture = CompletableFuture.allOf(futures.toArray(new CompletableFuture[futures.size()]));
       return allDoneFuture.thenApply(v -> futures.stream().map(CompletableFuture::join).collect(Collectors.<T>toList()));
   }
public static <T> CompletableFuture<Stream<T>> sequence(Stream<CompletableFuture<T>> futures) {
       List<CompletableFuture<T>> futureList = futures.filter(f -> f != null).collect(Collectors.toList());
       return sequence(futureList);
   }

或者Java Future转CompletableFuture:

public static <T> CompletableFuture<T> toCompletable(Future<T> future, Executor executor) {
    return CompletableFuture.supplyAsync(() -> {
        try {
            return future.get();
        } catch (InterruptedException | ExecutionException e) {
            throw new RuntimeException(e);
        }
    }, executor);
}

github有多个项目可以实现Java CompletableFuture与其它Future (如Guava
ListenableFuture)之间的转换,如spotify/futures-extra、future-converter、scala/scala-java8-compat 等。

由于回调风格的实现,我们不必因为等待一个计算完成而阻塞着调用线程,而是告诉CompletableFuture当计算完成的时候请执行某个function。而且我们还可以将这些操作串联起来,或者将CompletableFuture组合起来。

参考文档

  • Java 8: Definitive guide to
    CompletableFuture
public <U> CompletableFuture<U>  thenApply(Function<? super T,? extends U> fn)  public <U> CompletableFuture<U>  thenApplyAsync(Function<? super T,? extends U> fn)  public <U> CompletableFuture<U>  thenApplyAsync(Function<? super T,? extends U> fn, Executor executor) 

这一组函数的功能是当原来的CompletableFuture计算完后,将结果传递给函数fn,将fn的结果作为新的CompletableFuture计算结果。因此它的功能相当于将CompletableFuture<T>转换成CompletableFuture<U>。

使用例子如下:

CompletableFuture<Integer> future = CompletableFuture.supplyAsync(() -> {      return 100;  });  CompletableFuture<String> f =  future.thenApplyAsync(i -> i * 10).thenApply(i -> i.toString());  System.out.println(f.get()); //"1000" 

需要注意的是,这些转换并不是马上执行的,也不会阻塞,而是在前一个stage完成后继续执行。

下面一组方法虽然也返回CompletableFuture对象,但是对象的值和原来的CompletableFuture计算的值不同。当原先的CompletableFuture的值计算完成或者抛出异常的时候,会触发这个CompletableFuture对象的计算,结果由BiFunction参数计算而得。因此这组方法兼有whenComplete和转换的两个功能。

public <U> CompletableFuture<U>     handle(BiFunction<? super T,Throwable,? extends U> fn)  public <U> CompletableFuture<U>     handleAsync(BiFunction<? super T,Throwable,? extends U> fn)  public <U> CompletableFuture<U>     handleAsync(BiFunction<? super T,Throwable,? extends U> fn, Executor executor) 

它们与thenApply*
方法的区别在于handle*方法会处理正常计算值和异常,因此它可以屏蔽异常,避免异常继续抛出。而thenApply*方法只是用来处理正常值,因此一旦有异常就会抛出。

纯消费结果

上面的方法是当计算完成的时候,会生成新的计算结果(thenApply,
handle),或者返回同样的计算结果(whenComplete,CompletableFuture)。CompletableFuture提供了一种处理结果的方法,只对结果执行Action,而不返回新的计算值,因此计算值为Void:

public CompletableFuture<Void>  thenAccept(Consumer<? super T> action)  public CompletableFuture<Void>  thenAcceptAsync(Consumer<? super T> action)  public CompletableFuture<Void>  thenAcceptAsync(Consumer<? super T> action, Executor executor) 

看它的参数类型也就明白了,它们是消费型函数式接口Consumer,这个接口只有输入,没有返回值。

CompletableFuture<Integer> future = CompletableFuture.supplyAsync(() -> {      return 100;  });  CompletableFuture<Void> f =  future.thenAccept(System.out::println);  System.out.println(f.get());  public <U> CompletableFuture<Void>                thenAcceptBoth(CompletionStage<? extends U> other, BiConsumer<? super T,? super U> action)  public <U> CompletableFuture<Void>                thenAcceptBothAsync(CompletionStage<? extends U> other, BiConsumer<? super T,? super U> action)  public <U> CompletableFuture<Void>                thenAcceptBothAsync(CompletionStage<? extends U> other, BiConsumer<? super T,? super U> action, Executor executor)  public CompletableFuture<Void>  runAfterBoth(CompletionStage<?> other,  Runnable action) 

thenAcceptBoth以及相关方法提供了类似的功能,当两个CompletionStage都正常完成计算的时候,就会执行提供的action,它用来组合另外一个异步的结果。

runAfterBoth是当两个CompletionStage都正常完成计算的时候,执行一个Runnable,这个Runnable并不使用计算的结果。

例子如下:

CompletableFuture<Integer> future = CompletableFuture.supplyAsync(() -> {      return 100;  });  CompletableFuture<Void> f =  future.thenAcceptBoth(CompletableFuture.completedFuture(10), (x, y) -> System.out.println(x * y));  System.out.println(f.get()); 

更彻底地,下面一组方法当计算完成的时候会执行一个Runnable,与thenAccept不同,Runnable并不使用CompletableFuture计算的结果。

public CompletableFuture<Void>  thenRun(Runnable action)  public CompletableFuture<Void>  thenRunAsync(Runnable action)  public CompletableFuture<Void>  thenRunAsync(Runnable action,  Executor executor) 

因此先前的CompletableFuture计算的结果被忽略了,这个方法返回CompletableFuture<Void>类型的对象。

CompletableFuture<Integer> future = CompletableFuture.supplyAsync(() -> {      return 100;  });  CompletableFuture<Void> f =  future.thenRun(() -> System.out.println("finished"));  System.out.println(f.get()); 

因此,你可以根据方法的参数的类型来加速你的记忆。Runnable类型的参数会忽略计算的结果,Consumer是纯消费计算结果,BiConsumer会组合另外一个CompletionStage纯消费,Function会对计算结果做转换,BiFunction会组合另外一个CompletionStage的计算结果做转换。

组合

有时,你需要在一个future结构运行某个函数,但是这个函数也是返回某种future,也就是说是两个future彼此依赖串联在一起,它类似于flatMap。

public <U> CompletableFuture<U>  thenCompose(Function<? super T,? extends CompletionStage<U>> fn)  public <U> CompletableFuture<U>  thenComposeAsync(Function<? super T,? extends CompletionStage<U>> fn)  public <U> CompletableFuture<U>  thenComposeAsync(Function<? super T,? extends CompletionStage<U>> fn,  Executor executor) 

这一组方法接受一个Function作为参数,这个Function的输入是当前的CompletableFuture的计算值,返回结果将是一个新的CompletableFuture,这个新的CompletableFuture会组合原来的CompletableFuture和函数返回的CompletableFuture。因此它的功能类似:

A +–> B +—> C

记住,thenCompose返回的对象并不一是函数fn返回的对象,如果原来的CompletableFuture还没有计算出来,它就会生成一个新的组合后的CompletableFuture。

例子:

CompletableFuture<Integer> future = CompletableFuture.supplyAsync(() -> {      return 100;  });  CompletableFuture<String> f =  future.thenCompose( i -> {      return CompletableFuture.supplyAsync(() -> {          return (i * 10) + "";      });  });  System.out.println(f.get()); //1000 

而下面的一组方法thenCombine用来复合另外一个CompletionStage的结果。它的功能类似:

A +

|

+——> C

+——^

B +

两个CompletionStage是并行执行的,它们之间并没有先后依赖顺序,other并不会等待先前的CompletableFuture执行完毕后再执行。

public <U,V> CompletableFuture<V> thenCombine(CompletionStage<? extends U> other, BiFunction<? super T,? super U,? extends V> fn)  public <U,V> CompletableFuture<V> thenCombineAsync(CompletionStage<? extends U> other, BiFunction<? super T,? super U,? extends V> fn)  public <U,V> CompletableFuture<V> thenCombineAsync(CompletionStage<? extends U> other, BiFunction<? super T,? super U,? extends V> fn, Executor executor) 

其实从功能上来讲,它们的功能更类似thenAcceptBoth,只不过thenAcceptBoth是纯消费,它的函数参数没有返回值,而thenCombine的函数参数fn有返回值。

CompletableFuture<Integer> future = CompletableFuture.supplyAsync(() -> {      return 100;  });  CompletableFuture<String> future2 = CompletableFuture.supplyAsync(() -> {      return "abc";  });  CompletableFuture<String> f =  future.thenCombine(future2, (x,y) -> y + "-" + x);  System.out.println(f.get()); //abc-100 

Either

thenAcceptBoth和runAfterBoth是当两个CompletableFuture都计算完成,而我们下面要了解的方法是当任意一个CompletableFuture计算完成的时候就会执行。

public CompletableFuture<Void>        acceptEither(CompletionStage<? extends T> other, Consumer<? super T> action)  public CompletableFuture<Void>        acceptEitherAsync(CompletionStage<? extends T> other, Consumer<? super T> action)  public CompletableFuture<Void>        acceptEitherAsync(CompletionStage<? extends T> other, Consumer<? super T> action, Executor executor)  public <U> CompletableFuture<U>     applyToEither(CompletionStage<? extends T> other, Function<? super T,U> fn)  public <U> CompletableFuture<U>     applyToEitherAsync(CompletionStage<? extends T> other, Function<? super T,U> fn)  public <U> CompletableFuture<U>     applyToEitherAsync(CompletionStage<? extends T> other, Function<? super T,U> fn, Executor executor) 

acceptEither方法是当任意一个CompletionStage完成的时候,action这个消费者就会被执行。这个方法返回CompletableFuture<Void>

applyToEither方法是当任意一个CompletionStage完成的时候,fn会被执行,它的返回值会当作新的CompletableFuture<U>的计算结果。

下面这个例子有时会输出100,有时候会输出200,哪个Future先完成就会根据它的结果计算。

Random rand = new Random();  CompletableFuture<Integer> future = CompletableFuture.supplyAsync(() -> {      try {          Thread.sleep(10000 + rand.nextInt(1000));      } catch (InterruptedException e) {          e.printStackTrace();      }      return 100;  });  CompletableFuture<Integer> future2 = CompletableFuture.supplyAsync(() -> {      try {          Thread.sleep(10000 + rand.nextInt(1000));      } catch (InterruptedException e) {          e.printStackTrace();      }      return 200;  });  CompletableFuture<String> f =  future.applyToEither(future2,i -> i.toString());  

辅助方法 allOf 和 anyOf

前面我们已经介绍了几个静态方法:completedFuture、runAsync、supplyAsync,下面介绍的这两个方法用来组合多个CompletableFuture。

public static CompletableFuture<Void>  allOf(CompletableFuture<?>... cfs)  public static CompletableFuture<Object>  anyOf(CompletableFuture<?>... cfs) 

allOf方法是当所有的CompletableFuture都执行完后执行计算。

anyOf方法是当任意一个CompletableFuture执行完后就会执行计算,计算的结果相同。

下面的代码运行结果有时是100,有时是”abc”。但是anyOf和applyToEither不同。anyOf接受任意多的CompletableFuture,但是applyToEither只是判断两个CompletableFuture。anyOf返回值的计算结果是参数中其中一个CompletableFuture的计算结果,applyToEither返回值的计算结果却是要经过fn处理的。当然还有静态方法的区别,线程池的选择等。

Random rand = new Random();  CompletableFuture<Integer> future1 = CompletableFuture.supplyAsync(() -> {      try {          Thread.sleep(10000 + rand.nextInt(1000));      } catch (InterruptedException e) {          e.printStackTrace();      }      return 100;  });  CompletableFuture<String> future2 = CompletableFuture.supplyAsync(() -> {      try {          Thread.sleep(10000 + rand.nextInt(1000));      } catch (InterruptedException e) {          e.printStackTrace();      }      return "abc";  });  //CompletableFuture<Void> f =  CompletableFuture.allOf(future1,future2);  CompletableFuture<Object> f =  CompletableFuture.anyOf(future1,future2);  System.out.println(f.get()); 

更进一步

Guava的Future类,它的Futures辅助类提供了很多便利方法,用来处理多个Future,而不像Java的CompletableFuture,只提供了allOf、anyOf两个方法。
比如有这样一个需求,将多个CompletableFuture组合成一个CompletableFuture,这个组合后的CompletableFuture的计算结果是个List,它包含前面所有的CompletableFuture的计算结果,guava的Futures.allAsList可以实现这样的功能,但是对于java
CompletableFuture,我们需要一些辅助方法:

public static <T> CompletableFuture<List<T>> sequence(List<CompletableFuture<T>> futures) {         CompletableFuture<Void> allDoneFuture = CompletableFuture.allOf(futures.toArray(new CompletableFuture[futures.size()]));         return allDoneFuture.thenApply(v -> futures.stream().map(CompletableFuture::join).collect(Collectors.<T>toList()));     }  public static <T> CompletableFuture<Stream<T>> sequence(Stream<CompletableFuture<T>> futures) {         List<CompletableFuture<T>> futureList = futures.filter(f -> f != null).collect(Collectors.toList());         return sequence(futureList);     } 

或者Java Future转CompletableFuture:

 public static <T> CompletableFuture<T> toCompletable(Future<T> future, Executor executor) {     return CompletableFuture.supplyAsync(() -> {          try {              return future.get();          } catch (InterruptedException | ExecutionException e) {              throw new RuntimeException(e);          }      }, executor);  } 

【编辑推荐】

发表评论

电子邮件地址不会被公开。 必填项已用*标注